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Abstract 

In this paper, we use the optimal homotopy analysis method (OHAM) for approximate solutions of the fractional 

order Logistic equation. The numerical results obtained are compared with the results obtained by using variational 

iteration method (VIM) and Adomian decomposition method (ADM). The fractional derivatives are described by 

Caputo's sense. Exact and/or approximate analytical solutions of these equations are obtained. The results reveal that 

this method is very effective and powerful to obtain the approximate solutions. Copyright © acascipub.com, all 

rights reserved.   

 

Key words: Logistic equation; Fractional order-differential equations; Homotopy analysis method ; Optimal value; 

Caputo's fractional derivative. 

_____________________________________________________________________________________________ 

 

1- Introduction 

 
The subject of fractional calculus and its applications (that is, the theory of integrals and derivatives of any arbitrary 

real or complex order) has gained considerable popularity and importance during the past three decades or so, 
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mainly due to its applications in diverse fields of science and engineering. Recently, the nonlinear oscillation of 

earthquakes can be modeled with fractional derivatives.  

In recent years, fractional differential equations (FDEs) have found applications in many problems in physics and 

engineering [1-4]. Since most of the nonlinear FDEs cannot be solved exactly, approximate and numerical methods 

must be used. Some of the recent analytic methods for solving nonlinear problems include the Adomian 

decomposition method (ADM) [5-6], Homotopy-perturbation method (HPM) [7-8], variational iteration method 

(VIM) [9-10] and homotopy analysis method (HAM) [11]. The Homotopy analysis method (HAM) [12-21] is a 

general analytic scheme to get series solutions of various types of linear and nonlinear equations. In this work, we 

will implement the optimal homotopy analysis method (OHAM) to obtain the numerical solutions of the following 

fractional order logistic equation of the form considered in [22-25]. 

El-Sayed et al. [22-23] and Sweilam et al. [24-25] were concerned with the fractional-order logistic equation. They 

studied the stability, existence, uniqueness and numerical solution of the fractional order logistic equation. 

The aim of this paper is to directly extend the (OHAM) to consider the numerical solution of the fractional order 

logistic equation of the form 

                     
Dutut1ut, t 0, 0 1,0     1.1

                          (1.1) 

with initial condition 

                                                          
u0x0 .     1.2

                                                        (1.2) 

The fractional derivatives are considered in the Caputo sense. The general response expression contains a parameter 

describing the order of the fractional derivative that can be varied to obtain various responses. In the case of  ,1  

Eq. (1.1) reduces to the classical nonlinear logistic equation. 

The paper has been organized as follows. In Section 2, a brief review of the theory of fractional calculus will be 

given to fix notation and provide a convenient reference. In Section 3, we give analysis of the OHAM. In Section 4, 

we extend the application of the OHAM to construct numerical solution for the fractional order logistic equation. 

Conclusions are presents in section 5. 

 2- Definitions of fractional derivatives and integrals 

 
In these sections, we give some definitions and properties of the fractional calculus. Several definitions of fractional 

calculus have been proposed in the last two centuries. There are many books [1-4] that develop fractional calculus 

and various definitions of fractional integration and differentiation, such as Grunwald-Letnikov's definition, 

Riemann-Liouville definition, and Caputo's definition and generalized function approach. For the purpose of this 

paper, the Caputo's definition of the fractional differentiation will be used, taking the advantage of Caputo's 

approach that the initial conditions for fractional differential equation with Caputo's derivatives take on the 

traditional form as for integer-order differential equation. 

Definition 2. 1. A real function  ht, t 0  , is said to be in the space  C, R,   if there exists a real number  



International Journal of Advanced Mathematics and Physics 

Vol. 1, No. 1, December 2013, PP: 01 -09 

Available online at  http://acascipub.com/Journals.php 

 

3 

 

p ,  such that  httph1t,    where  h1t C0,,  and it is said to be in the space C 
n

  if and only 

if  h
n
 C,n  N.   

Definition 2.2. The Riemann-Liouville fractional integral operator  J

  of order  0,   of a function  

,1,  Ch   is defined as  

                               

Jht 1



0

t

t1hd0

J0htht     2.1
                               (2.1) 

   is the well- known Gamma function. Some of the properties of the operator  
J  , which we will need here, 

are as follows: 

(1)  ),()( thJthJJ     

(2)  ),()( thJJthJJ     

(3)  .
)1(

)1( 



 




 ttJ   

Definition 2. 3. The fractional derivative  )( D   of  )(th   in the Caputo's sense is defined as  

                                  

.  ,0,    ,1for 

,   )()(
)(

1
)(

1

)(1

0

n

nn
t

ChtNnnn

dht
n

thD










 








                             (2.2) 

The following are two basic properties of Caputo's fractional Derivative [4]: 

(1) Let  .,1 NnCh n  
  Then  nhD  0,   is well defined and  .1ChD

  

(2) Let  n1 n ,  n  N   and  .1,  

nCh   Then 

                                       .
!

)0()()()( )(
1

0 k

t
hththDJ

k
k

n

k







                                       (2.3) 

3- Basic idea of optimal homotopy analysis method (OHAM)  

 

 
For more clarifications about these basic ideas of the OHAM for nonlinear partial differential equations. It's better to 

see the following nonlinear partial differential equation: 

                                    ,0)],([ txuN                                                                  (3.1) 

Where  N   is a nonlinear operator for this problem,  x    and  t   denotes the independent variables, and  ux, t  

is an unknown function. 

Through using the HAM, we first construct zero-order deformation equation 
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                                     )],,,( [)()],();,([)1( 0 qtxNtqhHtxuqtxq                   (3.2) 

Where  ]1,0[q   is the embedding parameter,  0h   is an auxiliary parameter,  0)( tH   is an auxiliary 

function,     is an auxiliary linear operator,  ),(0 txu   is an initial guess, at  0q   and  1q  , we have  

                                   ).,()1;,(     ),,()0;,( 0 txutxtxutx                                    (3.3) 

By considering a Taylor series expression of  ),,( qtx   with respect to  q    in the form  

                                    ,),(),();,(
1

0

m

m

m

qtxutxuqtx 




                                      (3.4) 

where 

                                  ,|
);,(

!

1
),( 0




 qm

m

m
q

qtx

m
txu


                                             (3.5) 

the initial guess, the auxiliary function  )(tH  and the auxiliary parameter  h   are selected such that the series  

)4.3(   is convergent at  1q  , then we have from  )4.3(  Liao [10] and [11]   

                                

ux, tu0x, t
m1



umx, t.     3.6

                                            (3.6)               

We give the definition of the vector  

                                
un

tu0x, t,u1x, t,u2x, t, . . . . . ,unx, t.     3.7

                    (3.7) 

Differentiating  )2.3(    m    times with respect to  q  , then setting  0q   and dividing then by  !m  , we have the  

mth
 - order deformation equation 

                                   ),()()],(),([ 11



  mmmmm uthHtxuxtxu R                            (3.8) 

where 

                                

R mum1



1
m1!


m1Nx, t;q

qm1
q0 ,     3.9

                    (3.9) 

and 

                                     










.11

,10

m

m
xm                                                         (3.10) 

Applying the integral operator on both side of (3.8), to get  

                               

umx, tmum1x, th

0

t

HtR mum1

dt,     3.11

                     (3.11) 
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the  mth
 - order deformation Eq.  )8.3(   is linear so we can solve it easily, especially by means of symbolic 

computation software such as Mathematical. 

S.J. Liao [26], Yabushita et al. [27] and Mohamed S. Mohamed et al.  [28, 29] they suggested the so called 

optimization method to find out the optimal convergence control parameters by minimum of the square residual 

error integrated in the whole region having physical meaning. Their method depends on the square residual error. 

Let  )(h   denote the square residual error of the governing equation (3.1) and express as  

                                       ,)])([()( 2   dtuNh                         (3.12) 

where 

                                      )()()(
1

0 tututu k

m

k

m 


                                           (3.13) 

And the optimal value of  h   is given by solving the following a equation as: 

                                           

dh

dh
0.     3.14

                                                 (3.14) 

4- Solving fractional order logistic equation by the optimal homotopy analysis method 

(OHAM) 

 

In this section, to demonstrate the effectiveness of our approach, we apply the OHAM to construct approximate 

solutions for the nonlinear fractional order logistic equation of the form 

                                 
Dutut1ut, t 0, 0 1,0     4.1

              (4.1) 

with initial condition 

u0x0 .     4.2
                                                       (4.2) 

The exact solution of this equation for  1,   the ODE case, is 

.   
1

)(
t

t

e

e
tu






                                                    (4.3) 

Accordingly, and by the initial conditions (4.2), we can choose  

u0tu0x0
 

as the initial guess of  ut , and we choose the auxiliary linear operator 

Ut;qDUt;q
 

with the property  C0,   where C is an integral constant. 
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Finally, for simplicity, we choose  Ht1   as the auxiliary function. Hence, we construct the zeroth-order 

deformation equation 

1q£Ut;qu0tq hNUt;q,     4.4
                          (4.4)      

where 

NUt;qDUt;qUt;qU2
t;q.     4.5

                        (4.5) 

Differentiating (4.4)  m   times with respect to  q  , then  q 0   and finally dividing them by  m!,   we have the  

mth -order deformation equation 

umtmum1th R mum1

,     4.6

                               (4.6) 

where 

R mum1



1
m1!


m1NUt;q

qm1
q0 ,     4.7

                  (4.7) 

From ( 4.4  and  4.7 , we have 

R mum1

Dum1 um1 

j0

m1

uj um1j     4.8

                        (4.8) 

Applying the fractional integral operator,  J
,   to both sides of  (4.6), we obtain 

umtmum1thJR mum1

, m1.

 

The first two terms of the HAM series solution are as follows: 

u1thx0
2
x0

t

1
,

 

u2t1hu1t
2 h2
x0

2
x02x0 1 t2

21
,

 

and 

u3t1hu2t
2 h2
1hx0

2
x02x0 1 t2

21


3 h3
x0

2
x02x0 12

t3

31


2 h2
x0

2
x0

t3

31

21

11
,

 

Hence, the HAM series solution of the initial-value problem (1.1) and (1.2) can be given by 
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utu0tu1tu2tu3t. . .     4.9
                      (4.9) 

And so on setting  h 1   and  1  ; we get an accurate approximation solution in the following form: 

uapp ADM
uapp HPM

uapp VIM
uapp HAM

.
 

The series (4.9) contain the auxiliary parameter  h  . The results (4.9), is the same approximate solutions obtained by 

Sweilam et al. [24-25]. 

To investigate the influence of  h   on the convergence of the solution series given by the HAM, we first plot the so-

called  h  -curves of  u


0.   According to the  h  -curves, it is easy to discover the valid region of  h  . We used  

4   terms in evaluating the approximate solution  ),();(
3

0

txutxu i

i




   . Note that the solution series contains the 

auxiliary parameter  h   which provides us with a simple way to adjust and control the convergence of the solution 

series. In general, by means of the so called  h  -curve i.e., a curve of a versus  h  . As pointed by Liao [12], the 

valid region of  h   is a horizontal line segment. Therefore, it is straightforward to choose an appropriate range for  

h   which ensure the convergence of the solution series. We stretch the  h  -curve of  )0(


u   in Fig.  1 , which 

shows that the solution series is convergent when  02  h  . 

 

Fig1. The  h  -curve of the three order approximate solutions  4.9  when  .1,0  t   

   As mentioned in section 3, the optimal value of  h   is determined by minimum of  4 ,  corresponding to the 

nonlinear algebraic equation  0
 

 4 


hd

d
  , our calculations showed that,  4d   has its minimum values at  

834348.0h   
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Fig. 2. The exact solution (4.1) Dashing line (--- ---) is compared with the approximate solution (4.9) (---------) when  

h    834348.0  ,  5.00  x   and     =  1 .  

 

 5- Conclusion 
 

In this work, the OHAM was applied to derive exact and approximate analytical solutions of nonlinear fractional 

initial-value problems FIVPs. So, the OHAM can be applied to solve linear/nonlinear fractional differential 

equation. In conclusion, OHAM provides accurate numerical solution for nonlinear problems in comparison with 

other methods. This scheme provides us a simple way to adjust and control the convergence of the series solution by 

choosing proper values of auxiliary and homotopy parameters. In conclusion, HAM gives accurate approximate 

solution for nonlinear problems in comparison with other methods.. Mathematical has been used for computations in 

this paper. 
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